

Grant Agreement No. ICT-2009-270082

Project Acronym PATHS

Project full title
Personalised Access To cultural Heritage Spaces

D 3.1 Specification of System Architecture

Authors: Stein Runar Bergheim (AVINET);

 Idar Thoresen Kvam (AVINET)

Contributors: Phil Archer (iSieve)

 Kate Fernie (MDR)

 Paul Clough (USFD)

 Tor Gunnar Øverli (AVINET)

 Mark Stevenson (USFD)

Project funded under FP7-ICT-2009-6 Challenge 4 – “Digital Libraries and Content”

Status Final

Distribution level Public

Date of delivery 10/10/2011

Type Report

Project website http://www.paths-project.eu

Project Coordinator Dr. Mark Stevenson
University of Sheffield

Change Log

Version Date Amended by Changes

0.1 08/06/2011 Stein Runar Bergheim TOC

0.8 30/08/2011 Idar Thoresen Kvam First complete draft

0.92 28/04/2011 Stein Runar Bergheim Added section on methodology

0.93 19/09/2011 Stein Runar Bergheim Added sections on operational
considerations and security,
incorporated comments from partners.

1.0 03/10/2011 Stein Runar Bergheim Made changes following second round
of input from project partners.

1.0 10/10/2011 Kate Fernie Added executive summary

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

3

1 EXECUTIVE SUMMARY .. 5

2 INTRODUCTION .. 8

2.1 Overview .. 8

2.2 Scope ... 9

2.3 Background .. 9

2.4 Assumptions and Constraints .. 11

3 METHODOLOGY .. 12

3.1 System Design Framework ... 12

3.2 System Design Alternatives .. 13

3.3 Risks .. 17

3.4 Requirements Compliance Matrix ... 17

4 ROLES AND RESPONSIBILITIES MATRIX .. 20

5 SYSTEM DESCRIPTION ... 21

5.1 System Software Architecture ... 21

5.2 System Technical Architecture .. 23

5.3 System Hardware Architecture.. 23

5.4 External Interfaces ... 24

6 SUBSYSTEM SPECIFICATIONS .. 26

6.1 Data integration sub-system .. 26

6.2 User profile sub-system ... 26

6.3 Presentation sub-system ... 28

6.4 Path authoring sub-system .. 29

6.5 Information retrieval sub-system ... 30

6.6 Recommender sub-system ... 31

6.7 Web Service API sub-system .. 32

7 DATA ARCHITECTURE ... 34

7.1 Non-database file storage ... 34

7.2 RDBMS data storage ... 34

7.3 RDF data storage .. 36

8 SECURITY .. 37

8.1 User Level Permissions ... 37

8.2 Control Points .. 37

8.3 Vulnerabilities .. 38

9 OPERATIONAL CONSIDERATIONS .. 39

9.1 Audit Trail ... 39

9.2 Recoverability .. 39

9.3 Data Retention ... 39

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

4

9.4 Conventions/Standards ... 40

REFERENCES ... 42

APPENDIX A – Acronym List and Glossary .. 43

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

5

1 EXECUTIVE SUMMARY
The purpose of PATHS is to provide users with innovative ways to access and utilize the
contents of digital libraries that enrich their experiences of these resources.

This deliverable describes in detail the PATHS system architecture which contains modules
for (1) storage and management of data, (2) user profile management, Path authoring,
content recommendation, information retrieval and presentation – all accessible through (3) a
Web API invoked through lightweight client-side libraries which may be used for application
development in HTML5 and JavaScript.

The system architecture was developed in accordance with the principles of the Systems
Development Life Cycle management (SDLC) following a profile which allows for agile,
iterative development. This document is the result of these phases:

 Project planning and feasibility study

 Systems analysis and technical requirements definition

 Systems design

The future phases of the system design include implementation, integration and testing,
acceptance, installation and deployment.

This system architecture specification follows the IEEE System Design Description (SDD)
and uses UML as the primary modelling language, expressing the system architecture as
use-case diagrams, class diagrams and deployment diagrams.

This deliverable consists of:

Chapter 2: Introduction. This gives an overview of the system architecture and an
introduction to the specification structure.

Chapter 3: Methodology. This chapter describes the approach used to develop the PATHS
system architecture in terms of the methodology, the evaluation of different alternatives for
the PATHS sub-systems, risks management related to the system development and
conformance to functional requirements specified in PATHS deliverable D1.3.

Several design alternatives were evaluated towards five key criteria for the overall system:

1 Robustness
2 Scalability
3 Performance
4 Flexibility

In cases where sub-systems of the PATHS architecture have dependencies on existing
software which might be satisfied by one or more product, several products have been tested
and/or benchmarked against each other to determine which is best suited for PATHS. The
key aspects which were evaluated were:

 Database

 Triple store

 Spatial visualisation engine

 Development platform

The development of the System Design Description identified a possible risk of performance
problems for RDF stores with large numbers of triples. To mitigate this risk a hybrid
mechanism is proposed using both a high-performance relational database management
system in conjunction with a triple store. This strategy will allow applications to use the triple
store to look up related concepts and then retrieve the actual data from the RDBMS.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

6

Section 3.4 provides a cross-reference between the list of functional requirements described
in PATHS deliverable D1.3 and the system architecture.

Chapter 4: Roles and responsibilities. This chapter describes the roles and responsibilities

of the development resources available in the PATHS consortium, and which sub-system
each partner will contribute to.

Chapter 5: System description. This chapter provides an overview of the PATHS system
architecture in terms of: (1) a high-level software view; (2) a technical architecture view which
shows how the software is deployed to the logical server infrastructure; (3) an overview of
the physical server and network infrastructure of the system; and (4) description of
communication interfaces which are employed in integrating the different layers of the
architecture which may also be used as external interfaces for development of 3rd party
applications on top of the PATHS application layer.

Three logical servers are required to support the system architecture:

1. A database server to support the operation of the PATHS system
2. A file server to store non-database files such as images.
3. An application server to provide a triple store, spatial visualisations, web server and

search indexer

The hardware infrastructure is envisaged to consist of three physical servers, a hardware
fire-wall and an internet router

Chapter 6: Sub-system specifications. This chapter provides detailed technical
specifications of the modules of each of the sub-systems of the PATHS application layer.
The sub-systems are:

 Data integration - which provides the interfaces needed to communicate with the

data stores. Four different interfaces are offered to support the flexibility required by
the system

 User profile – allows the creation and maintenance of user profiles, and logging of

user behaviour

 Presentation – enables client applications to request visualisations of Paths and

other items

 Path authoring – enables the creation of Paths (a set of items connected by

narratives)

 Information retrieval – secures efficient indexing and searching through Paths and

items using text, time and spatial search mechanisms

 Recommender – provides a user browsing an item with suggestions of other items to

visit

 Web Service API - exposes the PATHS sub-systems to the Internet for integration

into end-user applications

Chapter 7: Data architecture. This chapter describes the PATHS data model and data
storage strategy. The three modules of the virtual data repository sub-system consist of:

 Non-database file storage of images, audio, video and enriched XML files

 RDBMS data storage for items and Paths

 RDF data store (or triple store) for vocabularies (persons, geographical names, time
periods, topics, subjects etc).

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

7

Chapter 8: Security. This chapter describes how security concerns have been addressed in
the system architecture including:

 User level permissions

 Control points (authentication, firewall, local user management)

 Vulnerabilities (logins and user rights permitting write access)

Chapter 9: Operational considerations. This chapter describes the procedures,

validations and tests required to operate the system at the end of the Software Development
Life Cycle (SDLC). It covers:

 The Audit trail put in place to trace the cause of system incidents

 Recoverability in the event of system failure

 Data retention
o Application and web server logs are retained for two months before archiving
o Management of „deletions‟ by setting of a data type
o Retention of „deleted‟ user accounts for three months

 Conventions and standards deployed through the development and implementation
of the PATHS system architecture.

References to other relevant PATHS project deliverables.

Appendix A provides an acronym list and glossary

In conclusion, this deliverable describes the PATHS technical system architecture intended
to support systems to enrich the experience of users who are accessing content from very
large digital libraries.

Its scope is the technical system architecture and not the end-user requirements, client-layer
applications, end-user interfaces and processing of raw data which are the subject of
separate deliverables.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

8

2 INTRODUCTION

The purpose of PATHS is to provide users with innovative ways to access and utilize the
contents of digital libraries that enrich their experiences of these resources.

In the first instance achieving this objective means identifying the state-of-the-art of current
applied technology in the domain of digital libraries systems. This will establish the baseline
from which the PATHS system must evolve. Second user requirements must be gathered
and analysed in order to project which new functionality should be supported by PATHS user
interfaces and third, a system must be implemented which supports all necessary entry,
indexing, retrieval and display mechanisms required to drive the user interfaces sought by
the users.

This System Design Documentation describes in detail the PATHS system architecture. A
system which contains modules for (1) storage and management of data, (2) modules for
user profile management, Path authoring, content recommendation, information retrieval and
presentation – all accessible through (3) a Web API which may be invoked through
lightweight client-side libraries which may be used for application development in HTML5 and
JavaScript.

2.1 Overview
This system architecture specification follows the IEEE System Design Description (SDD)
and uses UML as the primary modelling language, expressing the system architecture as
use-case diagrams, class diagrams and deployment diagrams.

The different elements of the system are described as a hierarchy:

 The PATHS system consists of several sub-systems which are responsible for
distinctive parts of the system. Systems and sub-systems are abstract and only used
to logically group the functionality.

 A sub-system consists of one or more modules which interact to provide the
functionality required from the sub-system. Modules are physical pieces of software.

 A module, if complex, may be broken down into components for the ease of
description.

Figure 2.1-1 Hierarchy of elements described in the SDD document.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

9

Figure 2.1-2 Preliminary system architecture as outlined in PATHS description of work.

2.2 Scope
The scope of this document is the technical system architecture for the application and data
layers of the PATHS system.

The System Design Description does not cover the following:

 End-user requirements

 Client layer applications

 End-user interfaces

 Processing of raw data from PATHS data providers Europeana and Alinari

These elements are described in detail in deliverables D1.3, D2.1 and D4.1. See Error!
Reference source not found.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

10

2.3 Background
The PATHS system is built as part of a FP7 ICT research project and is meant to result in
technically sophisticated prototypes which validate innovative paradigms for indexing,
enrichment, retrieval and presentation. This allows for some flexibility in terms of the system
architecture which will be geared more towards enabling demonstration of potential than
towards making a deployment ready solution which effortlessly should integrate with any
data source. It is however a sustainability requirement that the project results in a solution
which may be deployed to additional cultural heritage platforms, including Europeana,
towards the end of the project.

The main challenge which the PATHS system addresses is the ability to enrich the
experience of users who are accessing content form large digital libraries like Europeana. In
the latter digital library, the content is sourced from hundreds of cultural heritage institutions
across Europe and provides detailed descriptions of individual cultural heritage objects held
in these collections in the form of Dublin Core (baseline) or more semantically rich metadata.

Figure 2.3-1 Europeana stores metadata “items” which describe digital objects held by institutions all over Europe.
Digital objects in many cases represent one or more characteristics of a physical object but may also be original,

born-digital content.

For users with a traditional search engine problem which needs solving, Europeana is
currently able to provide the answers if the user is able to phrase the question. For users
who approach Europeana wishing to explore the content in a personalized way, the situation
is different as there are few relationships between items in Europeana allowing users to
move from one to another – also, where relationships are present; there is no information
which may aid or inspire the user in determining if he would like to browse the related
content. In short, the data used as a starting point for the PATHS project are a very large
digital library consisting of “atomic” facts with a less well-developed relational model
connecting them.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

11

PATHS provides mechanisms to enrich Europeana and Alinari content with links to third-
party content (Wikipedia) and other content items through a content processing process
which adds where, what, when and who annotation to the original data. The PATHS system

architecture is geared towards exploiting the enriched content to provide a personalized user
experience when exploring large volume digital libraries.

2.4 Assumptions and Constraints
This section identifies preconditions in the form of assumptions and constraints for the
technical work to be carried out within PATHS WP3.

2.4.1 Assumptions

The system architecture assumes the following:

 Semantic processing and annotation will be done as bulk pre-process. The system
may therefore not be deployed automatically on top of a compliant information
volume without manual pre-processing of the content

2.4.2 Technical constraints

 Fixed time-frame and funding requires a strict adherence to a phased project
schedule. The flexibility to add new user requirements towards the end of the project
will decrease.

 The budget does not permit the use of high-end commercial software in any modules
of the system architecture. This constraint is not envisaged to have a significant
impact on the project as it is very much in alignment with the organizational policies of
the partners. However, when it comes to semantic non-SQL databases such as triple-
stores there are currently no open source technologies that perform equally well as
their commercial counterparts. The system architecture takes this into consideration
by employing a hybrid approach, combining the query capabilities of SPARQL with
the efficiency of SQL.

2.4.3 Non-technical constraints

 For the personalization of the system there are legal constraints as to which aspects
of user behaviour may be captured and stored. The system may therefore not store
behaviour which may be traced back to identifiable users.

 Resulting end-user applications must conform to the Web Accessibility Initiative‟s
(WAI) Web Content Accessibility Guidelines (WACG), a W3C recommendation which
describes for developers and content authors how to make web content accessible
for users.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

12

3 METHODOLOGY
This chapter describes the approach used to develop the PATHS system architecture in
terms of methodological framework, development and evaluation of different alternatives for
the PATHS system architecture sub-systems, risks management related to the system
development and conformance to functional requirements specified in PATHS deliverable
D1.3.

3.1 System Design Framework
The system architecture was developed in accordance with the principles of the Systems
Development Life Cycle management (SDLC). This methodology has been around for a long
time and is not without its deficiencies, but is suitably abstract and may easily be adapted to
the specific requirements of the PATHS project. The custom SDLC profile applied by the
project allows agile, iterative development and involves the following phases:

 Project planning and feasibility study: Establishing a high-level view of the PATHS
system and determines its goals and objectives.

 Systems analysis and technical requirements definition: Transforms PATHS
objectives into defined sub-systems and modules, providing functionality for the
planned end-user applications. Analyses end-user information needs.

 Systems design: Describes desired features and operations in detail, including BPMN
business processes, UML use case diagrams, UML class diagrams and other
documentation.

The methodology is iterative and the result of the first iteration of the three phases described
above is version 1.0 of this System Design Description document. Subsequent iterations of
these three phases may be required prior to physical implementation of the system. Further
phases include:

 Implementation: Physical implementation of the sub-systems and modules defined in
the specification into executable code.

 Integration and testing: Combines a test-suite of system level, module level, unit
level, performance and integration tests aiming to identify errors, bugs and
interoperability issues.

 Acceptance, installation, deployment: The final stage of initial development, where
the software is put into production and runs actual business.

 Maintenance: What happens during the rest of the system life-cycle: changes;
correction; additions; moves to different computing platforms and more.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

13

Figure 3.1-1 Simplified overview of the System Development Life-Cycle process

For ease of working across a development team consisting of members from four different
organizations with heterogeneous working methodologies, a formal structure has been
chosen for the development of design documentation. The IEEE System Design Document
(SDD) standard, IEEE 1016, secures a 360 degree view of the system architecture and
formalizes the semantics used to describe the system. This way, the risk of ambiguity or
interpretation issues is significantly reduced throughout the decentralized development team.

Furthermore, for all technical illustrations, the Unified Modelling Language (UML) v1.4 from
the Object Modelling Group has been used. In the same way as the SDD standard improves
the readability of the design document, UML defines formal semantics which makes it easy
to understand what is meant by a specific drawing. Free-form drawings may often be more
visually appealing than the strict UML diagrams but are often difficult to interpret due to the
freedom of semantics which leaves them open to different interpretation based on the
thematic and technical skills and experience of the reader.

3.2 System Design Alternatives
Throughout the development of the system architecture, several design alternatives have
been evaluated towards five key criteria for the overall system, these are:

 Robustness

 Scalability

 Performance

 Flexibility

Additionally, several of the sub-systems of the PATHS system architecture have
dependencies towards existing software. In cases where more than one product has proven
able to satisfy the technical requirements, several products have been tested and/or
benchmarked against each other to determine which is best suited for PATHS. Key options
which have been evaluated are listed below.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

14

3.2.1 Choice of database

Product Evaluation

PostgreSQL PostgreSQL is a RDMBS which has always been focussing
on features and standards compliance, aiming to become an
open source alternative, or replacement, to the main
commercial RDBMS such as Oracle, SQL Server and DB2. It
has been around since 1985 and was after some years in
academia, made into an open source effort. The core
strength of PostgreSQL is to safely and securely hold the
data it manages and a flexible architecture allows for core
extensions to be developed by the entire community – this
has resulted in successful modules such as PostGIS and
PgRoute which provides spatial functionality and network
problem resolver capabilities to the PostgreSQL core
respectively. The PostgreSQL development community is the
largest and oldest Open Source database community.
Released under a BSD License.

MySQL MySQL was started in Sweden in 1994 out of a need to have
a high-speed database behind Websites. It was released in
the open-source world a few years later. MySQL was
designed to be a fast indexed sequential access method
(ISAM) data store for Websites. This type of work load is
geared mostly towards read operations with many small
queries. The extensibility is secured through an API for
development of extensions. Development community large
but partly controlled by Sun and later Oracle. Released under
a GPL license.

Conclusion: While the performance of the two evaluated systems is similar, the security
features and scalability of PostgreSQL as well as its ease of integrating spatial data through
the PostGIS and PgRoute modules have made this the preferred choice.

3.2.2 Choice of triple store

Product Evaluation

AllegroGraph RDF Store
(free edition)

Although released under a proprietary license, AllegroGraph
comes with a free edition which does not conflict with the
usage envisioned within the PATHS research project. The
system has a wide range of query APIs and has
demonstrated good scalability.

Mulgara Semantic Store Mulgara is a native RDF triple store written in Java. It
provides a Connection API that can be used to connect to
the Mulgara store. Being a native triple store it has a “load”
script which can be used to load RDF data into the triple
store. In addition to supporting SPARQL queries through the
connection API, these can be performed through a dedicated
TQL shell client application.

SESAME Sesame is an open source framework for storage,
inferencing and querying of RDF data. It offers a

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

15

connection API, inferencing support, availability of a web
server and SPARQL endpoints and Jena it provides
support for multiple back ends like MySQL and
PostsgreSQL.

Jena Jena is a java framework for building semantic web
applications. Jena implements APIs for dealing with
Semantic Web building blocks such as RDF and OWL.
RDF models can be created from the file system or from
remote files, accessible over the Internet. Using JDBC, it
can also be tied to an existing RDBMS such as MySQL or
PostgreSQL.

Virtuoso Virtuoso, is a native triple store available in both open
source and commercial licenses. It provides command line
loaders, a connection API, support for SPARQL and a
built-in web server for performing SPARQL queries and
uploading of data over HTTP. Independent testing has
found Virtuoso to be scalable to the region of 1B+ triples

Conclusion: The performance of FOSS triple-stores is still inferior to that of its commercial
counterparts but due to the constraints of the PATHS project, it is an absolute requirement
that the technology must be open source or free software. The system architecture will be
implemented using Virtuoso with Mulgara as a fall-back strategy should the former not prove
sufficient to meet the robustness requirements.

3.2.3 Choice of spatial visualization engine

Product Evaluation

MapServer A simple map server written in C which has been around
since the mid-90s. Does not aspire to be a full-fledged GIS
processing engine but is compliant with main OGC
standards, is highly efficient when it comes to generating
map images and supports a large variety of input and output
formats. Available APIs include PHP, .NET and Java

GeoServer A comprehensive set of geo-manipulation tools written in
Java and packed into a map server suite. Highly
sophisticated spatial data manipulation functionality and high
performance.

OpenLayers A client-side map visualization framework written entirely in
JavaScript allowing easy embedding of cartographic and
stylized maps into web pages without the need for client-side
plugins. Allows seamless integration of PATHS data with
global map service providers such as Google, Yahoo!,
Microsoft Live Local etc.

Conclusion: the most suitable technology for generation of maps is MapServer on account of
its superior performance. For client-side applications consuming map visualizations,
OpenLayers will be used to access MapServer from client-side applications.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

16

3.2.4 Choice of development platform

Product Evaluation

Java The preferred language in academic circles. Highly object
oriented and platform neutral but not as widely used in the
mainstream end-user application development community as
VB and VB.NET. Many libraries and software components
which PATHS sub-systems and modules depend on are
written and only available in Java. Java is suitable for both
executable programs and just-in-time compiled scripts.

PHP A programming language originally geared towards creating
personal homepages which in later times have come to
power industry grade web applications such as
Facebook.com, WordPress.com and other web giants. Easy
to work with and object oriented with many programming
libraries available to facilitate rapid application development.

.NET (C#, VB) Due to the vast popularity of the Windows platform and the
once near monopoly of VBA as a macro and extension
programming language for desktop applications, .NET is
currently the most widely used platform for commercial
development of services on the web. Syntactically, C# is very
close to Java and promotes the same good practices in
coding. Has to some extent taken up competition with Java in
the academic community – many libraries are available.

HTML5 (HTML + CSS +
JavaScript)

The key technologies which together form HTML5 have all
been around for a long time but have only recently come to
fame, first with Web 2.0 and Ajax – then with HTML5 where
the programmability of the new elements permits
development of rich client-side applications.

C High-level interpreter languages which require compilation
are easy to write code in but invariably slower than its lower
level machine code counterparts. For these purposes, Java
and especially C are superior to the interpreted languages. A
number of high-performance applications including the
spatial visualization engine, MapServer, are written in C.

Conclusion: Due to the heterogeneity of the platforms used in the digital libraries
communities it is envisaged that the development platform must permit applications to be
built using several common technologies. This requires the PATHS systems to communicate
with the client applications through web service interfaces. Due to dependency on existing
software and in order to draw on the experiences of PATHS partners, it is also envisaged
that the sub-systems of the PATHS system architecture may be implemented in several
languages. Java will for an example be used for the indexing and information retrieval sub-
systems as this module depends on Apache Lucene (see chapter 6.5 below), whereas C will
be used for the map generation module of the presentation sub-system which will invoke
MapServer. HTML5 may be used in developing client applications and will communicate with
the PATHS system application layer via web services.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

17

3.3 Risks
This section describes risks identified throughout the development of the System Design
Description and proposes mitigation strategies.

Risk Mitigation strategy

Performance problems for RDF stores with
large amounts of triples

The PATHS system architecture does not
rely on all data being stored in an RDF-store.
Rather a hybrid mechanism is proposed
whereby most data are being retrieved using
traditional high-performance RDBMS
technology at the same time as what, where,
when and who vocabularies used to annotate
the content resources are loaded into a triple
store. This allows applications to use the
triple store to look up related concepts in a
graph of limited size and then retrieve the
actual data related to the concepts from the
RDBMS.

3.4 Requirements Compliance Matrix
This System Design Description takes as a starting point the comprehensive list of functional
requirements described in PATHS deliverable D1.3.

Priority Req. Identifier Requirement Description

M
U

S
T

1.1.1. Registration See section 6.2 below

1.1.2. Profile See section 6.2 below

1.1.3. Edit Profile See section 6.2 below

1.1.4. Visibility of profile See section 6.2 below

1.1.5. Search the collection See section 6.5 below

1.1.6. Primary object See section 6.5 below

1.1.7. Collect Objects See section 6.5 below

1.1.8. Search workspace See section 6.5 below

1.1.9. Search Paths by topic See section 6.5 below

1.1.10. Save searches See section 6.2 below

1.1.11. Find existing Paths See section 6.2 below

1.1.12. Links to related content See section 6.6 below

1.1.13. Create Paths See section 6.4 below

1.1.14. Edit Paths See section 6.4 below

1.1.15. Identity See section 6.4 below

1.1.16. Search engine friendly

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

18

1.1.17. Add content

1.1.18. Describe themes and sub-
themes

1.1.19. Add content tied to objects

1.1.20. User comments on Paths See section 6.2 below

1.1.21. Attribution

1.1.22. Grant access to specific users
& users

See section 6.2 below

1.1.23. Permission to clone

1.1.24. User identity

1.1.25. Multiple platforms

1.1.26. Zoom

1.1.27. Sense of discovery

1.1.28. Delete user profiles and user-
generated content

S
H

O
U

L
D

1.2.1. Familiarity

1.2.2. Organise Personal Collection

1.2.3. Flexible design

1.2.4. No restriction on object type

1.2.5. Create Paths across multiple
sessions

1.2.6. Grant access to specific
groups

1.2.7. Communication with Path
creator

1.2.8. Activity description

1.2.9. Tagging objects

1.2.10. Aggregate tags

1.2.11. Search via tags

1.2.12. Show/hide annotations

1.2.13. Clone Paths

1.2.14. Time factor

1.2.15. User comments on items in a
Path

C
O

U
L

D
 1.3.1. Add any resource to holding

space

1.3.2. Rate Paths

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

19

1.3.3. Receive private comments

1.3.4. Tag rewards

1.3.5. Geo-location data

1.3.6. Matching Paths and objects to
locations

1.3.7. User content

1.3.8. Web content as object

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

20

4 ROLES AND RESPONSIBILITIES
MATRIX

This section describes the roles and responsibilities of the development resources available
in the PATHS consortium. The table below shows which sub-system each partner with
resources committed towards work package 3 will contribute to.

Sub-system AVINET iSieve USFD UPV/EHU

Content processing sub-system X X

Sentiment analysis sub-system X

Virtual data repository sub-system X X

Data integration sub-system X

User profile sub-system X X

Path authoring sub-system X X

Recommender sub-system X X

Information retrieval sub-system X X

Presentation sub-system X X X X

Web API sub-system X X

Test suite X

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

21

5 SYSTEM DESCRIPTION
This chapter provides an overview of the PATHS system architecture in terms of: (1) a high-
level software view; (2) a technical architecture view which shows how the software is
deployed to the logical server infrastructure; (3) an overview of the physical server and
network infrastructure of the system; and (4) description of communication interfaces which
are employed in integrating the different layers of the architecture which may also be used as
external interfaces for development of 3rd party applications on top of the PATHS application
layer.

5.1 System Software Architecture
The PATHS system architecture is a Service Oriented Architecture (SOA) with three logical
layers:

1. A data layer
2. An application layer
3. A client layer

The data layer consists of two sub-systems: (1) a virtual data repository sub-system; and (2)
a content processing sub-system. Only the former is described in this SDD document as the
latter is dealt with in great detail in PATHS deliverable D2.1 Processing and Representation
of Content for First Prototype.

The application layer consists of seven sub-systems: (1) a data integration sub-system; (2) a
user profile sub-system; (3) a Path authoring sub-system; (4) a recommender sub-system;
(5) an information retrieval sub-system; (6) a presentation sub-system and; (7) a Web-API
sub-system.

The content of the client layer is not defined in detail in this SDD document as the
specification of end-user applications is the topic of PATHS deliverables D1.3 and D1.5. The
functionality which will be present in the end-user applications is however dictated by the
capabilities exposed by the application layer through the Web-API sub-system mentioned
above.

Together, the components of the three logical layers forms a system capable of
implementing all functionality which has been identified as part of the user requirements
phase and which has subsequently been translated into a functional specification in D1.3.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

22

Figure 5.1-1 High level software architecture UML class diagram

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

23

5.2 System Technical Architecture
The PATHS system software architecture requires the establishment of a technical
architecture consisting of logical servers and software capable of supporting the functionality
to be provided by the sub-systems of the PATHS Service Oriented Architecture (SOA) data
and application layers.

Three logical servers are required to support the system architecture:

4. A database server
5. A file server
6. An application server

The database server will be equipped with PostgreSQL and PostGIS and a data definition
script will be installed and executed in order to establish the relational database structured
required to support the operation of the PATHS system.

The file server will be used to store non-database binary and text files which form part of the
data such as imagery from Alinari, XML-files from Europeana etc. No additional software or
functions is envisaged for this server.

Finally, the application server will provide a triple store in the form of Virtuoso, a spatial
rendering engine in the form of MapServer, a Java servlet engine in the form of Tomcat, an
HTTP server in the form of Internet Information Server (IIS) and a search indexer in the form
of Apache Lucene.

Figure 5.2-1 PATHS technical architecture UML deployment diagram

5.3 System Hardware Architecture
The logical infrastructure consisting of software and logical servers requires a solid hardware
platform to provide the robustness and scalability required to handle the significant quantities
of data available through the PATHS system. The hardware infrastructure is envisaged to
consist of three physical servers, a hardware fire-wall and an internet router.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

24

1. The file server has mid-range hardware requirements (>= 1 x 2.2 GHz quad-core
processor, >= 4 GB DDR3 RAM and gigabit or optical connection to the application
server, 500 GB storage in RAID3 or better.

2. The database server has high-end hardware requirements (>= 2 x 3 GHz quad core
processor, >= 8 GB DDR3 RAM, 500GB of storage in RAID3 or better.

3. The application server has high-end hardware requirements (>= 2 x 3 GHz quad core
processor, >= 8 GB DDR3 RAM, 500GB of storage in RAID3 or better.

4. The firewall has must permit a large number of concurrent connections reserved for
the PATHS system as the potential usage volume is quite high. All communication
through the firewall towards this Internet will go over HTTP on port 80.

5. There are no specific requirements for the Internet router except that the bandwidth
available to the PATHS system must be >= 30 Mbit/sec in order to guarantee a
satisfactory user experience.

Figure 5.3-1 PATHS hardware architecture UML deployment diagram

5.4 External Interfaces
The PATHS system architecture is self-contained in that it does not have any external
extension points beyond the capability of the application layer to communicate with the end-
user applications in the client layer via web services. The interfaces between the different
system architecture layers are:

 Communication Between data layer and application layer
o JDBC over TCP/IP
o ODBC over TCP/IP
o SMB over TCP/IP
o SPARQL/HTTP over TCP/IP

 Between the application layer and the client layer
o RESTful XML and JSON Web Services

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

25

Figure 5.4-1 PATHS SOA (external) interfaces UML class diagram

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

26

6 SUBSYSTEM SPECIFICATIONS
While chapter 5 above is concerned with providing a logical overview of the system, this
chapter provides detailed technical specifications of the modules of each of the sub-systems
of the PATHS SOA application layer. The sub-systems of the data layer are described in
chapter 7 below.

6.1 Data integration sub-system
The fundamental part of the PATHS application layer is the data integration sub-system. This
provides the interfaces required to communicate between PATHS code and the data stores.

Due to the flexibility requirements of the system, the sub-system will offer four different
interfaces for communication between application code and the virtual data repository:

1. Open DataBase Connectivity (ODBC) for connecting to PostgreSQL from .NET, C
and PHP applications.

2. Java DataBase Connectivity (JDBC) for connecting to PostgreSQL from Java
applications

3. Simple Protocol And RDF Query Language (SPARQL) over HTTP for issuing queries
towards the Virtuoso RDF store from any application.

4. Server Message Block (SMB) protocol for read-write access to file server from any
application.

Figure 6.1-1 UML class diagram showing communication interfaces in the PATHS data integration sub-system

6.2 User profile sub-system
The user profile sub-system allows the creation and maintenance of user profiles as well as
logging of user behaviour for authenticated and non-authenticated PATHS users.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

27

Figure 6.2-1 PATHS user profile sub-system UML use case diagram

6.2.1 User profile sub-system modules

This section provides a short description of each of the modules in the sub-system, their
functions and dependencies.

6.2.1.1 User profile module

The user profile module allows creation, editing and deletion of user profiles. User profiles
will capture an absolute minimum of information and will not store any form of sensitive data
which makes it possible to resolve a user id to a legal or physical person unless the
username discloses this information. A user ID may be linked to an existing OpenID account
such as Facebook, Google or other OpenID providers. This is likely to be a catalyst, or at
least the removal of a barrier to, gaining registered users for the PATHS system.

6.2.1.2 Authentication module

The authentication module allows authentication of users. If the user is linked to an OpenID
account, the password verification will be conducted remotely and a session will be created
in which the user may enjoy privileges which require authentication.

6.2.1.3 Log behaviour module

The log behaviour module captures the patterns in which users move from one PATHS item
to another. Behaviour will be recorded for any movement regardless whether an item is part
of a PATH or the user is merely browsing collections freely. Whenever a user jumps from
one item to another within a user session, the movement is recorded and a “weight” is added
to the route. Once sufficient data has been collected, the behaviour log may be used as a
data source for the recommender system (see chapter 6.6 below) to suggest alternative
ways forward whenever a user is browsing a collection, following or authoring a path.

6.2.1.4 Rating module

The rating module allows authenticated users to rate: (1) other users; (2) Items and (3) Paths
she or he is browsing. This information will also be used as input to the recommender system

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

28

in order to provide suggested “reading” in the context of viewing a specific item. A rating may
be applied to any item which has a URI.

6.2.1.5 Tag module

It is possible to assign a tag to any item identified by a URI including Items, Paths and Users.

6.2.1.6 Link module

It is possible to create links between any two items as long as they are identified by a URI
including Items, Paths and Users.

6.3 Presentation sub-system
The presentation sub-system enables client applications to request visualizations and
representations of Paths and Items for presentation in an end-user interface. Information
returned by the presentation sub-system will be either XML, JSON or “pure” HTML which
may be styled using CSS from the end-user application.

Figure 6.3-1 PATHS presentation sub-system UML use case diagram

6.3.1 Modules

This section provides a short description of each of the modules in the sub-system, their
functions and dependencies.

6.3.1.1 Text and multimedia module

The text and multimedia module takes care of presentation of “traditional” multimedia article
content such as text, images, audio and video or combinations of these. The module must
accept common formats which are widely deployed. The content will be pure HTML or XML
which may be styled and presented in a flexible manner using CSS or XSLT respectively.

6.3.1.2 3D space visualization module

No user requirement has yet been identified which requires 3D visualization but the module
is left in the SDD document as a potential future development for the second prototype.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

29

6.3.1.3 2D space visualization module

Spatial visualization in the form of traditional topographic maps as well as stylized maps has
come up as user requirements during the initial stage of the project. The module will allow
visualization of individual items in a geographic map or stylized 2d space . Items may also be
visualized in their spatial context, showing other items in the proximity. The user may filter
which categories/types of items are shown in the map.

Base maps may be sourced from e.g. OpenStreetMap (OSM) or GoogleMaps in order to
gain global coverage. The module will be implemented using MapServer and the services
exposed thorugh the WebAPI will be conformant to the OGC WMS standard. Maps will be
returned to the client application as an interactive widget.

6.3.1.4 Time-line visualization module

This module will provide temporal visualization in the form of presentation of a content item in
the context of other content items on a time axis will be returned to the client application as
an interactive widget.

6.4 Path authoring sub-system
The Path authoring sub-system enables the creation of Paths consisting of a set of items
chained together by narratives which subjectively describe the relationships between them
as seen by the author.

Figure 6.4-1 PATHS authoring sub-system UML use case diagram

6.4.1 Modules

This section provides a short description of each of the modules in the sub-system, their
functions and dependencies.

6.4.1.1 PATH authoring module

The Path authoring module allows authenticated users to create new Paths as well as edit
clone and delete existing Paths. Paths created by a user will be available to her or him
throughout the authenticated user session.

A Path has a direction which is implied by the sequence of the items. Each item is added to
the Path through a proxy class called a Node which stores the position of the item in the Path
as well as a reference to the concerned Item.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

30

Whenever the author is looking at an item presentation, she or he may add it to the end or
beginning of any existing Path – or add the item to a new Path in which case the Item will
become the first node of the Path.

The Path itself has a narrative which describes the content or purpose of the Path. Each
Node may have a description and all NodeLinks, the “glue” which keeps the Nodes in a Path
together, have a narrative which describes the relationship between two adjacent nodes. The
narrative is a free text. If some typology is desirable, this may be implemented on the Client
side, allowing the user to select from a number of pre-defined relationships as an alternative
to supplying a comprehensive narrative.

6.5 Information retrieval sub-system
The PATHS information retrieval sub-system will secure efficient indexing of and searching
throughout Paths and Items using a variety of textual, temporal and spatial search
mechanisms.

Figure 6.5-1 PATHS information retrieval sub-system UML use case diagram

6.5.1 Modules

This section provides a short description of each of the modules in the sub-system, their
functions and dependencies.

6.5.1.1 Free-text and advanced search module

The free-text search module will utilize the industry proven Apache Lucene indexing and
search engine in order to provide “lightning fast” free text queries towards the entire PATHS
data volume including both user authored Paths and Items sourced from Europeana and
Alinari. Lucene supports certain simple semantics which allows users to specify “Google
style” inclusion and negation operators in the queries to further refine them. This will enable
users to search for entire phrases, omit results which contain a certain word etc.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

31

The advanced search module works and is based on the same technical components as the
free-text module but will allow querying against specific metadata items for higher precision.
The advanced search module will also optionally perform query expansion in order to retrieve
not only exact matching but related items.

6.5.1.2 Temporal search module

The temporal search module will enable users to search for Items by a single date, by time
intervals and time period designations which will be attempted resolved to dates or time
intervals as defined in the time period vocabulary of choice. (The appropriate vocabulary for
the PATHS information domain has yet to be decided upon).

6.5.1.3 Spatial search module

The spatial search modules will allow searching towards Paths and Items using spatial
search criteria, namely points, lines or polygons according to the OGC Simple Features
Specification (SFS) or place names according to the global geographical names web service,
GeoNames. This module anticipates user requirements which are envisaged for the second
prototype.

6.6 Recommender sub-system
The recommender sub-system will provide a user browsing an Item with suggestions on
which Item to visit next. The recommender system will for this purpose employ a set of
components looking for related Paths, related locally held Items, related Items as implied by
user behaviour and related Cloud content.

Figure 6.6-1PATHS recommender sub-system UML use case diagram

6.6.1 Modules

This section provides a short description of each of the modules in the sub-system, their
functions and dependencies.

6.6.1.1 Recommender module

The recommender module takes as a starting point the item currently being browsed by a
user and tries to determine relevant related content by a number of different methods,
invoked by specialized components as shown in the use case diagram above.

The queries towards the different components are executed in parallel, and the priority of the
requests is shown in the UML sequence diagram below.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

32

1. First a component tries to identify other items which belong to Nodes in the currently
browsed Path or in Paths which are intersecting the currently browsed Path.

2. Second, a component identifies items which are relevant based on their spatial,
temporal and topical metadata compared to the current Item

3. Third, a component proposes relevant items based on recorded user behaviour such
as frequently traversed nodes etc.

4. Forth, a query is issued towards links generated during the PATHS content pre-
processing in WP2 to provide external context for the Item being browsed from e.g.
Wikipedia, Panoramio or other, similar service providers.

Figure 6.6-2 The sequence of priority for the query components which identifies related Paths and Items.

6.7 Web Service API sub-system
The Web Service API sub-system will expose the functionality of all other sub-systems in the
PATHS system architecture to the Internet from where they may accessed and integrated
into full-fledged end-user applications as specified in PATHS deliverable D1.3 and
subsequently D1.5.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

33

Figure 6.7-1 PATHS web service API UML class diagram

6.7.1 Modules

This section provides a short description of each of the modules in the sub-system, their
functions and dependencies.

6.7.1.1 Web API module

The Web API module will provide web service interfaces for accessing all the functionality in
the PATHS SOA application layer. The interface will consist of two parts: (1) a web service
API; and (2) a set of client libraries supporting rapid/easy client application development. The
Web API will as far as possible re-use existing code and libraries such as jQuery,
OpenLayers and similar.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

34

7 DATA ARCHITECTURE
This chapter describes the content of the PATHS system architecture data layer and the
virtual data repository consisting of a file store, an RDBMS and an RDF store.

Figure 6.7-1 PATHS Virtual Data Repository sub-system UML class diagram

7.1 Non-database file storage
The most fundamental part of the PATHS virtual data repository sub-system is the file
storage where all non-database files such as binary image, audio and video files as well as
enriched/annotated XML files are stored.

7.2 RDBMS data storage
In order to achieve sufficient performance with a potentially large number of users and a
relatively large quantity of Items, the primary data storage for Items and Paths is an RDBMS.
The selected product, PostgreSQL provides a comprehensive set of standard compliant as
well as product specific functions for data creation and maintenance. The built-in
mechanisms for insertion, updates and deletions will not compromise data integrity and
comprehensive operations may be wrapped within transactions which may be rolled back
upon failure.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

35

7.2.1 PATHS RDBMS data model

Figure 7.2-1: PATHS data model

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

36

7.3 RDF data storage
The third module of the Virtual Data Repository sub-system is the RDF data store, a native
RDF graph database which allows the storage of information as triplets. The RDF data store
will be used for RDF vocabularies expressing named entities (persons, geographical names),
time periods, topics/subjects etc.

The RDF data store will expose a SPARQL end-point which may be used to issue queries
and retrieve data from the data store. RDF data stores, or triple-stores as they are commonly
called, are far from as efficient as relational databases yet. For this reason, PATHS applies a
hybrid solution whereby the bulk of the data will be stored in a relational database whereas
indexes, vocabularies, annotations to and relationships between items will be placed in the
RDF store. This provides the flexibility, timeliness and power of a contemporary Semantic
Web solution without exhausting the performance and capacity of the system architecture.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

37

8 SECURITY
The PATHS system architecture implements a series of measures targeted at securing the
system against unauthorized or unintentional access which may compromise the integrity of
PATHS data.

8.1 User Level Permissions
The PATHS system architecture implements the following three user levels with the purpose
of mitigating the risk of unauthorized and/or unintentional access to the system which may
compromise data integrity.

Figure 8.1-1 User levels UML use case diagram

 A system administrator level is available only to trusted individuals in the organization
providing hosting for the PATHS system.

 An application user is created for each specific application and is given only such
permissions to the file-system and database as are required to run the application.

 A read-only user is created for volume queries by non-authenticated user which
should be tuned towards efficiency.

8.2 Control Points
The control points in the PATHS system architecture consists of:

 the authentication module described in detail in section 6.2.1.2 above;

 the firewall described in section 5.3 above and;

 local and network user management on the three physical servers described in
section 5.35.3 above

The authentication module determines which users have access to which application
functionality, Paths and Items.

The firewall controls network traffic access and prevents unauthorized or unintentional
access to the system over TCP/IP.

The local user management secures that applications are executed under certain user
privileges which secure that data will not be accidentally overwritten or have their integrity
compromised by concurrent access or operations.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

38

8.3 Vulnerabilities
Vulnerable points in the PATHS system architecture include:

 The authentication module accepts logins over standard HTTP which renders user
credentials visible in the case of IP address spoofing.

 Login screens are vulnerable to brute-force password attacks

 Elevated user rights permitting read/write to the virtual file repository sub-system may
cause accidental deletion of PATHS non-database files.

 Elevated user rights permitting table level update and deletion of records may
compromise data integrity for PATHS RBDMS data.

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

39

9 OPERATIONAL CONSIDERATIONS
Previous chapters having specified all the technical aspects of the system, this chapter
elaborates the operational considerations related to the development, running and
maintenance of the PATHS system architecture.

9.1 Audit Trail
In order to be able to trace the cause of system incidents such as application and data
errors, the PATHS system architecture employs the following mechanism:

 All code is developed towards a Concurrent Versioning System (CVS) repository that
allows the current code base to be reverted to any previous build upon detection of
errors. Each developer has a distinctive user identity for the CSV, allowing any
change in the code to be traced to a specific commit.

 All tables in the RDBMS are equipped with a “last update” column and the username
of the database user who most recently made a change.

 All operating system logs are retained for the purpose of auditing the error trail for any
application or system incidents which may occur throughout the system life cycle.

9.2 Recoverability
The system architecture is designed bearing recoverability of the system in mind in the event
of system failure. The system may be recovered from a complete crash by the following
steps:

1. System restore for operating systems.
2. Re-applying any non-file based application configuration.
3. Reloading of backups for application server, file server and database
4. Execute test-suite and rectify any issues identified

9.3 Data Retention
The PATHS system covers applications in the “edutainment” segment and do not contain
any form of sensitive information or records which are legally obliged to be retained.
However, a number of data retention measures are put in place to secure the audit trail, see
section 9.1 above

 All application and web server logs are retained for a grace period of two months
before they are archived, allowing for incident tracking of internal application
communication issues as well as external “attacks” on the infrastructure, unintentional
failures due to proxies etc.

 In order to prevent wrongful deletion of Paths or Items, these objects are never
physically deleted from the database but the Boolean data type column with the name
“deleted” is set to true for records which are disabled.

 A similar mechanism is put in place to avoid unintentional deletion of user accounts.
User accounts which have been deleted through the user interface will initially be
marked as deleted by setting the Boolean data type column with the name “deleted”
to true. A column with the timestamp of the last update of the user information will
also be updated and upon the completion of three months in this status, the user

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

40

account will be permanently deleted and its “owned” information elements such as
Paths, comments, etc attached to the system archive user.

9.4 Conventions/Standards
The following conventions and standards are employed throughout the development and
subsequent implementation of the PATHS system architecture:

Standard Description

IEEE SDD IEEE 1016-1998, also known as the Recommended Practice
for Software Design Descriptions, is an IEEE standard that
specifies an organizational structure for a software design
description (SDD). An SDD is a document used to specify
system architecture and application design in a software
related project.

OGC WMS Web Map Service (WMS) is a standard protocol for serving
geo-referenced map images over the Internet that are
generated by a map server using data from a GIS database.
The specification was developed and first published by the
Open Geospatial Consortium in 1999.

Google KML Keyhole Markup Language (KML) is an XML notation for
expressing geographic annotation and visualization within
Internet-based, two-dimensional maps and three-dimensional
Earth browsers. KML was developed for use with Google
Earth, which was originally named Keyhole Earth Viewer

W3C XML Extensible Markup Language (XML) is a set of rules for
encoding documents in machine-readable form. It is defined
in the XML 1.0 Specification produced by the W3C.

W3C HTML5 HTML5 is a language for structuring and presenting content
for the World Wide Web, a core technology of the Internet. Its
core aims have been to improve the language with support
for the latest multimedia while keeping it easily readable by
humans and consistently understood by computers and
devices. HTML5 is intended to subsume HTML4, XHTML1
and DOM2HTML (especially JavaScript).

ECMAScript ECMAScript is the scripting language standardized by Ecma
International in the ECMA-262 specification and ISO/IEC
16262. The language is widely used for client-side scripting
on the web, in the form of several well-known dialects such
as JavaScript, JScript, and ActionScript.

W3C RDF Resource Description Framework (RDF) is a family of World
Wide Web Consortium (W3C) specifications originally
designed as a metadata data model. It has come to be used
as a general method for conceptual description or modeling
of information and as the fundamental building block of the
Semantic Web.

SDLC Systems Development Life Cycle (SDLC), or Software
Development Life Cycle in systems engineering, information
systems and software engineering, is a process of creating

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

41

or altering information systems, and the models and
methodologies that people use to develop these systems.

OMG UML Unified Modeling Language (UML) is a standardized general-
purpose modeling language in the field of object-oriented
software engineering. UML includes a set of graphic notation
techniques to create visual models of object-oriented
software-intensive systems.

W3C SKOS Simple Knowledge Organization System (SKOS) is a family
of formal languages designed for representation of thesauri,
classification schemes, taxonomies, subject-heading
systems, or any other type of structured controlled
vocabulary. SKOS is built upon RDF and RDFS, and its main
objective is to enable easy publication of controlled
structured vocabularies for the Semantic Web.

W3C OWL The Web Ontology Language (OWL) is a family of
knowledge representation languages for authoring
ontologies. The languages are characterized by formal
semantics and RDF/XML-based serializations for the
Semantic Web.

Europeana ESE The Europeana Semantic Elements (ESE) data model is an
XML format consisting of elements from Dublin Core, DC
terms and a few Europeana specific extensions for the
purpose of providing end-user functionality in the current
Europeana portal.

Europeana EDM The Europeana Data Model (EDM) is a semantically rich
data model which supersedes ESE and seeks to overcome
the limitations of expressing relationships through Dublin
Core.

HTTP The Hypertext Transfer Protocol (HTTP) is a networking
protocol for distributed, collaborative, hypermedia information
systems.[1] HTTP is the foundation of data communication
for the World Wide Web

The definitions of the above are adapted from their corresponding articles on Wikipedia

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

42

REFERENCES
Other important documents from the PATHS deliverables include:

D1.1 User Requirements Analysis

D1.3 Functional Specification of First Prototype

D2.1 Processing and Representation of Content for Second Prototype

D4.1 Initial prototype interface design

Project deliverables will be published on the project website at: http://www.paths-
project.eu/eng/Resources

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

43

APPENDIX A – Acronym List and
Glossary

Term Description

API Application Programming Interface

FOSS Free Open Source Software

HTML Hyper-Text Mark-up Language

HTTP Hyper-Text Transfer Protocol

IP Internet Protocol

JavaScript See: ECMA Script

JDBC Java DataBase Connectivity

JSON JavaScript Object Notation

KML Keyhole Mark-up Language

ODBC Open DataBase Connectivity

OGC Open Geospatial Consortium

OMG Object Modelling Group

RDBMS Relational Database Management System

REST REpresentational State Transfer

SDLC System Development Life Cycle

SMB Server Message Block. A protocol for file sharing on
Windows and Unix based systems

SOA Service-Oriented Architecture

SPARQL Simple Protocol And RDF Query Language

SQL Structured Query Language

TCP Transmission Control Protocol

UML Unified Modelling Language

WFS Web Feature Server. A protocol for on-the-fly generation of
map images using http requests.

WMS Web Map Server. A protocol for query and download of
vector maps using http requests.

WP Work Package

WS Web Service

WSDL Web Service Description Language

PATHS Collaborative Project EU-ICT-270082 D3.1 Specification of System Architecture

44

XML eXtensible Mark-up Language

SFS Simple Features Specification

CVS Concurrent Versioning System

WAI Web Accessibility Initiative

WCAG Web Content Accessibility Guidelines

